Journal of Computational Informatics and Business

Research Article

Empirical Comparison of C++ And Python For Teaching Introductory Programming Students
and Their Impact On Learning Outcomes

Junaid Asghar !, Shaista Habib?, Ali Hussain**, Muhammad Majid Hussain*

13,4 Department of Computer Science and IT, The University of Lahore, Lahore Pakistan
2 Department of Artificial Intelligence, University of Management and Technology, Lahore Pakistan

*Corresponding Author: Junaid Asghar Email: mjasghar52@gmail.com

Received: January 18, 2025 Accepted: April 10, 2025 Published: April 14, 2025

Abstract: Programming is at the bedrock of the computing discipline and the decision between languages of
choice to be studied as first programming language lays the critical aspect of the learning of the fundamental
programming concepts, coding standards, and problem-solving methods. In the context of a rapidly
developing technology, it is necessary to reconcile pedagogical efficiency in academic training as well as
with the trends in the industry. C++ has enjoyed a long history as a dominant programming language in
academia and industry but doubts are being raised that it is not the most effective language to be learnt as a
beginner due to its perhaps more complex code than other languages such as Python. This paper is
comparative research on C++ and Python as the introductory languages in undergraduate studies. An
evaluation of the literature and student performance and engagement through survey allows us to conclude
that Python, with its simplicity, readability, syntactic regularity, orthogonality, and greater degree of
abstraction, is likely to produce higher learning outcomes and engagement even in novice programmers than
C++. The paper concludes that Python (as a programming language) is potentially more effective in teaching
elementary programming, but that also it is necessary to consider the goals of a curriculum and industry
practices.

Keywords: C++ and Python, Introductory Programming Language, Learner’s Perspective
1. Introduction

The appropriate programming language to be used in the beginning of the programming courses has been the most
common or disputed question around the globe. Python has gained popularity as a student introductory
programming language in many international institutions e.g. the University of Hertfordshire UK, the Royal
Melbourne Institute of Technology (RMIT) Australia and Massachusetts Institute of Technology (MIT). It is also
imperative that the teacher teaching a particular language is someone who has left a good impression among the

learners that emboldens them to keep learning, and to pursue the programming as a possible career option [1].

The principal objective is to introduce students to the basics of effective problem-solving to deliver solutions in
clear and concise manner [4][5]. The introductory programming language to learners should have a high flexibility
in solving daily life challenges that would enable the learner to adopt the projects and industry needs easily [6]. The
language that will probably be used should be capable of exhibiting good work in relation to the simplicity of the

programming language, orthogonal, semantic, regular, turnaround time, syntactic and debugging.

The teaching of programming in Pakistan started at the school level and is available at all levels of the doctorate in
education. Although a few students are already familiar with programming languages while enrolled in computing-
related degrees which has a positive impact on their learning of coding and language techniques, most of the

Volume 3 Issue 1, 2025 17

Journal of Computational Informatics and Business

students are not familiar with programming languages [4]. So, for non-familiar students, there is a complete
procedure, and process to learn the programming language from scratch. This stage required the debate of choosing
the right introductory language so that he/she may perform well in problem-solving, their courses, and specifically
in the industry for reliability in the computing market [7].

When it comes to choosing a programming language to teach introductory computer science courses, both C++
and Python are good options. However, the choice depends on the course’s learning objectives and the student’s
background. Python is an excellent language to learn to start introductory courses on computer science due to its
straightforwardness, legibility, and usability. The syntax used in Python is simple and this simplicity inspired
beginners to learn and comprehend different programming concepts. Python also has a great collection of modules
that make it simplistic to perform tasks such as data analysis, web scraping, and machine learning. C++ is the
powerful programmable language that is widely applied in system programming, games and other programs which
require high performance. It is more complex than Python and can take longer to learn, but it provides a better
understanding of computer architecture, memory management, and other low-level concepts. So, if the goal is to
teach basic programming concepts, Python is a better choice. However, if the course focuses on system
programming or performance optimization, then C++ might be more appropriate. The aim of this paper is to
evaluate the success of using Python and C++ to introduce basic concepts (Conditional Structures, Loop Structures,

Debugging, and use of libraries, etc). Such evaluation is based on the analysis of student assessments [7].

Pre-test = Group Randomization Post-test

/—— Python Cohort - 8 weeks \

-\- C++ Cohort - 8 weeks

Figure 1 Working flow of assessment taken

To measure the success of the proposed method, we present it to highlight the importance to develop an
experimental setting for a fair comparison and the importance to control the flow of execution of programming
language carefully. The experimental setting used in the survey-based paper is the survey-based analysis of a session
of BSCS students in the same session but different sections that are taught by the same teacher with different
programming languages. There are two sections for first-semester students, one is taught in Python and the other one
is taught in C++.

2. Proposed Methodology

In contemporary computer science education, selecting the most effective programming language for beginners is
a foundational decision that impacts student engagement, comprehension, and long-term success. Within this paper,
Python assessment submissions are compared against C++ submissions to evaluate differences in student
performance, cognitive load, and programming proficiency development. Since the structure and learning outcomes
of the Python and C++ assessments were nearly identical, any observed performance differences could primarily be
attributed to the programming languages themselves rather than task variation. This methodological consistency

enables a reliable comparison of the cognitive and practical challenges that each language poses for learners.

Both sets of assessments required students to engage with a variety of core programming tasks: implementing
basic logic (e.g., arithmetic operations), predicting output for given code segments, and identifying and correcting

syntax and logical errors in faulty programs. Variables, conditional statements, loops, functions, and fundamental

Volume 3 Issue 1, 2025 18

Journal of Computational Informatics and Business

data structures are just a few of the important concepts covered in the exercises for beginners in programming.
Importantly, the format and difficulty level of the questions were held constant across both languages [7]. The

survey collected data on the following factors [5].

e [Ease of learning: How easy is it for beginners to learn the language?
e Technical Features: Does the language have necessary technical features for modern programming?
e Al analysis accuracy: How accurate is the language in implementing Al algorithms?

The following comparisons have been carried out. The grades of the submitted program are a measure of the
success of the student’s ability to implement programs. Bugs are interpreted as a measure of their overall
understanding of programming. The combined results of performance assessments and student feedback suggest that
Python offers significant advantages as a first programming language. Its concise syntax, readability, and forgiving
execution environment reduce the barrier to entry and create a positive first experience for students. Importantly,
this initial success correlates with improved engagement, confidence, and retention in computing disciplines.
Educators are therefore encouraged to introduce Python in foundational courses to help students build core

programming logic without being overwhelmed by language idiosyncrasies.

On the other hand, whereas C++ can be useful in learning low-level computing concepts and system- level
programming, it is perhaps overkill to use in initial or basic-level courses where students are still gaining initial
skills. The performance of the students can be enhanced and the initial frustration discouraged by postponing their
introduction to C++ until they have mastered the skills of debugging and thus abstract thinking. This comparative
analysis of the research will have implications on the bigger academic planning and alignment with the industry.
Programming fluency, in turn, is becoming a graduate competency as Al, data science and software engineering
remain advanced and progressive disciplines. The prevalence of Python in the world of data-driven and artificial
intelligence makes it a valuable language in terms of both higher education and employment. Yet, on such areas as

embedded systems, games, and performance-sensitive applications, C++ will not die away any time soon.

Thus, academic programs might adopt a tiered approach, beginning with Python to instill algorithmic thinking and
transitioning to C++ to strengthen computational rigor and low-level understanding. This ensures that graduates are
well-rounded, able to adapt across various software development paradigms and meet the diverse demands of the
technology industry. They are indicators of students’ use of conditions, loops, sub-programming, and use of header
files (the library files). Two different academic sections of the same session have been used to collect data. During
the Fall-2024 academic session, the approach to emphasize the principles of programming and design using C++
from the very beginning is followed and the approach to first teach the basic programming concepts (loops, sub-
programming, and use of libraries) using Python and then move on to using C++ is followed. Using a mixed-method
approach, this study compares and assesses the accessibility and learning effectiveness of C++ and Python among
beginning programmers by combining quantitative and qualitative data. The participants were split evenly between

the Python and C++ learning groups.

Table 1 Description of variable and their types

Variable Type Description

Programming Language Independent C++ or Python

Learning Curve Dependent Measured by progress rate and
comprehension speed

Syntax Understanding Dependent Survey and test-based

Debugging Efficiency Dependent Errors per hour, success rate of fixes

Final Project Time Dependent Measured in hours

Perceived Difficulty Dependent Rated on 5-point Likert scale

Using a mixed-method approach, this study compares and assesses the accessibility and learning effectiveness of
C++ and Python among beginning programmers by combining quantitative and qualitative data. The participants

Volume 3 Issue 1, 2025 19

Journal of Computational Informatics and Business

were split evenly between the Python and C++ learning groups. SPSS for statistical testing and Python (Pandas,
Seaborne) were used for quantitative data analysis. Excel and Matplotlib were among the visualization tools used to
produce comparative graphs. The Python group used Google Colab for code execution and logging, whereas the
C++ group used Code: Blocks. In order to collect learning behavior analytics, including the number of attempts and
syntax errors, debug logs and compile/run statistics were tracked. For the first score analysis, descriptive statistics
(mean, median, and standard deviation) were employed. Independent sample t-tests were performed for every task
category in order to ascertain statistical significance in performance differences. 95% confidence intervals were
upheld. To evaluate the size of the observed differences, effect sizes (Cohen's d) were computed. Furthermore, data
variability across performance parameters was depicted using box plots and heat maps. The quasi-experimental
design restricts full control over confounding factors like individual learning styles, instructor nuances, and tutoring.
The findings may not apply to intermediate or advanced programming levels because the research is also limited to
introductory programming. Another limitation includes the use of different IDEs, which, while minor, might
influence debugging experiences. To ensure construct validity, tasks and assessment tools were aligned with
standard programming outcomes. A panel of programming educators reviewed the evaluation questions to confirm
their relevance and fairness. Reliability was maintained through standardized rubrics and cross-evaluation by
multiple graders for final project assessments. Additionally, triangulation of data sources (scores, feedback,

observation) enhanced the study’s credibility and internal consistency.

3. Results and Discussion

In both cases, students were assessed after approximately ten weeks of teaching. C++ assessments are from section
A of Fall-2024, whereas Python assessments are from section B of Fall-2024. The research is based on the 200+
students from both sections and an assumption that students are related to similar academic levels. This assumption
is supported by the fact that the admission criteria for both sections were the same. We obtain a score of 60 to
perform the analysis on their scores in different modules of programming languages like condition structures, loop
structures, and list/array structures. The following graph shows the performance of the students of Section A (C++)

and Section B (Python).Some EDA and Data Visualizations (Comparisons of results obtain) are discussed below:

The mean of the values of Section-A C++ is 4.58 for data of 60 samples while Section-B Python has 6.76 (as in

the attached file of Google Colab and sample questions for evaluation are as above).

The other comparison is obtaining scores of debugging (error detection), conditional structure (if, if else
statements), loop structure (for loop (addition, multiplication, etc.), and List/Array structure (contiguous memory
locations to store data) programs. The mean of the values of Section-A C++ is 5.01 for data of 60 samples while
Section-B Python has 6.76. The mean of values of Section-A C++ is 4.300 for data of 60 samples while Section-B
Python has 6.683. The mean of the values of Section-A C++ is 5.68 for data of 60 samples while Section-B Python
has 6.90 (as in the attached file of Google Colab) also for nested loop structure the mean value for C++ is 4.33 and
Python is 6.95.

Array/List

Figure 2 Sample array question and the students' performance chart

Volume 3 Issue 1, 2025 20

Journal of Computational Informatics and Business

The mean of the values of Section-A C++ is 5.75 for data of 60 samples while Section-B Python has 6.45
The basic statistics on the obtained scores from the student evaluation are as follows:

We discuss the results from our survey regarding the choice of the first programming language. [1] It must be
considered that students studied Python and studying C++ with no assumed background in programming. So after
10 weeks/1 of the semester, students perform well in python as compared to C++ in terms of the questionnaire and

interviews based on concepts of the simple calculating programs.

index C++ Score Python Score

count 50.0 60.0
mean 29 .65666660666666668 40.51666606666666606
std S5.497816721259902 4.5994102949984706
min 18.0 29.0
25% 270 37.0
S50% 28.5 41.0
T5% 33.0 440
mane 40,0 50.0

Figure 3 Score of student regarding both programming languages C++ and Python

The above results clearly show that the course that is to teach students the fundamentals of computer science and
programming, Python may be a better choice because the average/mean of C++ students is 29.66 and Python has a
mean value of 40.51 due to its ease of use and versatility.

The student (novice) performs well in Python because Python has a large and active community with many
libraries and tools available for various applications, making it a good choice for students interested in these fields
because Python's syntax is simple and concise, and it is often used in data analysis, web scraping, machine learning,
and web development. The survey results indicate that Python is the most suitable programming language as a first

programming language for beginners at the bachelor's level.

3.1 Research factors of comparison C++ and Python programming language
Here are the results for each factor:

1.Ease of learning: 84% of the respondents found Python easier to learn than C++.

Figure 4 Radar Chart : Student Feedback on Programming Language Features

2. Technical features: 72% of the respondents found both languages equally capable, while 28% thought Python

was better suited for modern programming.

Volume 3 Issue 1, 2025 21

Journal of Computational Informatics and Business

Figure 5 Violin plot shows Python students typically understand technical features in 13-17 hours, while
C++ students take much time to understand

Al analysis accuracy: 92% of the respondents thought Python was better suited for Al analysis accuracy than C++.
Among the most interesting results of student survey was the comparison of Python and C++ in terms of accuracy of
Al analysis. One outstanding result was that a stunning 92 percent of respondents showed the opinion that Python is
more applicable to processes that are concerned with Al especially when it comes to accuracy in implementation,
model building, and library resources. Modern Python libraries like TensorFlow, PyTorch, Keras, and Scikit-learn
can be listed only among the factors contributing to such a contrasting level of popularity. Such tools are used in
academia as well as in industry, and allow students to learn to use real-world data and models without having to deal

with low-level issues of memory allocation, pointer arithmetic, etc.

Learners also emphasized that the ease of pythons syntax and high level abstractions enabled them to have more
attention on algorithmic logic and data processing than debugging technicalities. This was of particular importance
when it came to activities focused on neural networks, processing of data, and construction of Al pipelines. C++ on
the other hand is known to be of high performance and usually deployed in production resource where Al systems
need maximized speed; in terms of learning and experiment, C++ was considered cumbersome because of its
verbose syntax and a relatively steep learning curve. Most of the advanced students would prefer C++ to program
Al, mostly those who had already experienced performance engineering or contest programming.

The findings of the paper indicate that Python makes Al engineering accessible more than ever before but the
principles also indicate more innovativeness and experimentation amongst undergraduate learners. This is important
in fields such as Artificial Intelligence and Data Science, where quick iteration is a key concept, namely rapid
prototyping. The high level of Python usability in the Al setting is another point in support of its adoption as the
language of choice to be used during the introductory programming classes of an Al nature. Future directions of the
research will examine how exposure to Python at an early age achieves its effect on the proficiency in Al related

course work and project deliveries in the long term.

FUTURE WORK:

This research seeks to examine the learning effectiveness of C++ and Python for first-year undergraduate students.
However, it is critical to understand that the study serves only as a baseline assessment snapshot of the students’
programming skills. The teaching of programming encompasses much more than mere rote recitation of keywords
and algorithms; mastery is achieved over time, revealing multiple layers. To arrive at definitive insights, this study
must be conducted over a longer time span—tracking participants throughout their four-year degree program. Such
an analysis would enable educators and researchers to determine the impact of early language exposure on students’
programming skills and performance in advanced courses conducted later in their studies. In the context of
professional practice, the ultimate measure of effectiveness in programming education is readiness of the learner for

industry and job performance. This therefore justifies examining how graduates from Python- or C++-focused

Volume 3 Issue 1, 2025 22

Journal of Computational Informatics and Business

pathways perform in actual positions in software engineering, data science, embedded systems, and artificial
intelligence. By integrating educational assessment with actual demand in the market for web development, machine
learning, systems programming, and cloud computing, future studies may establish whether foundational skills
provided by certain programming languages.

Curriculum integration

As students’ progress beyond introductory courses, their engagement with core subjects like Data Structures,
Analysis of Algorithms, Object-Oriented Programming, Databases, and Operating Systems becomes crucial. These
courses often require a solid grasp of abstraction, modularity, performance optimization, and algorithmic thinking.
A comparative study of how students from C++ and Python foundations perform in these core courses could reveal
which language better scaffolds learning in theoretical and applied computing domains.

Addition in core computing courses

In addition, incorporating evaluations into project-based capstone courses and interdisciplinary applications
(such as robotics, IoT, and NLP) would give a complete picture of how adaptable and effective programming is.
Given the rising specialization within computing disciplines, such as BS in Computer Science, BS in Artificial
Intelligence, and BS in Data Science, it is pertinent to conduct language-specific batch-wise analyses across these
programs. Each degree program brings out slightly varied flavors of computational paradigm, with Python its
ecosystem and libraries taken to advantage in each case, whereas, systems-oriented CS tracks may fare better with
C++ when it comes to low-level control and efficiency. Future research could assess student progression and
project output during the degree as well as internships or employment provided at a later date to reveal not only
which language best helps learn immediate understanding but also which is best translated to independent
competency and problem-solving skills in the field of computing in general. As students advance past intro
courses it is essential that they become acquainted with more substantive coursework in fields such as Data
Structures, Analysis of Algorithms, Object-Oriented Programming, Databases, and Operating Systems. Such
courses can demand a firm understanding of abstraction, modularity, performance optimization and algorithmic
thinking. A comparative analysis study of performance of C++ foundation v/s Python foundation on these core
courses may tell us which language can best scaffold learning the theoretical/applied computing domain .

Volume 3 Issue 1, 2025 23

Journal of Computational Informatics and Business

References

[1] M. Ateeq, H. Habib, A. Umer, and M. Ul Rehman, “C++ or Python? Which one to begin with: A learner’s perspective,” in 2014
International Conference on Learning and Teaching in Computing and Engineering (LaTiCE), 2014, doi:
10.1109/LaTiCE.2014.20.

[2] Python Software Foundation, “Comparing Python to Other Languages,” Python.org, 2017. [Online]. Available:
https://www.python.org/doc/essays/comparisons/

[3] J. Wainer and E. C. Xavier, “A controlled experiment on Python vs. C for an introductory programming course: Students’
outcomes,” ACM Transactions on Computing Education, vol. 18, no. 3, 2018, doi: 10.1145/3152894.

[4] C. Martinez, M. J. Gomez, and L. Benotti, “A comparison of preschool and elementary school children learning computer science
concepts through a multilanguage robot programming platform,” in Proc. ITiCSE, 2015, doi: 10.1145/2729094.2742599.

[5] R. Turner, M. Falcone, B. Sharif, and A. Lazar, “An eye-tracking study assessing the comprehension of C++ and Python source
code,” in Proc. ACM Symposium on Eye Tracking Research & Applications, 2014, doi: 10.1145/2578153.2578218.

[6] N. Alzahrani, F. Vahid, A. Edgcomb, K. Nguyen, and R. Lysecky, “Python versus C++: An analysis of student struggle on small
coding exercises in introductory programming courses,” in Proc. 49th ACM Technical Symposium on Computer Science
Education (SIGCSE), 2018, pp. 246251, doi: 10.1145/3159450.3160586.

[71R. J. Enbody, W. F. Punch, and M. McCullen, “Python CS1 as preparation for C++ CS2,” ACM SIGCSE Bulletin, vol. 41, no. 1,
pp- 116-120, 2009, doi: 10.1145/1539024.1508907.

[8] D. Ginat, “On novice loop boundaries and range conceptions,” Computer Science Education, vol. 24, no. 3—4, pp. 232-255,
2014, doi: 10.1080/08993408.2014.961507.

[9] L. Porter, C. Bailey Lee, B. Simon, and D. Zingaro, “Peer instruction: Do students really learn from peer discussion in
computing?” in Proc. 7th International Computing Education Research Workshop (ICER), 2011, pp. 45-52, doi:
10.1145/2016911.2016923.

[10] A. Robins, J. Rountree, and N. Rountree, “Learning and teaching programming: A review and discussion,” Computer Science
Education, vol. 13, no. 2, pp. 137-172, 2003, doi: 10.1076/csed.13.2.137.14200.

Volume 3 Issue 1, 2025 24

https://www.python.org/doc/essays/comparisons/

