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Abstract: The efficient operation, planning and reliability of modern power systems rely on accurate electri-

cal load forecasting. Accurate demand forecasting allows for optimal use of resources by cutting unnecessary 

expenditures and improving grid stability. Since electricity usage is particularly volatile and nonlinear in time, 

conventional forecasting methods frequently have trouble identifying the complex temporal patterns. Finally, 

this study examines the performance of models based on time-series and deep learning for electrical load 

forecasting over several time horizons. Several statistical models (Autoregressive Integrated Moving Average 

— ARIMA and Seasonal ARIMA — SARIMA) are compared to a Long Short-Term Memory (LSTM) neural 

network to evaluate their forecasting performance. In addition, a hybrid ARIMA–LSTM model is presented 

to jointly reflect linear, seasonal, and nonlinear features of load series. The temporal and climatic-enhanced 

historical electricity consumption data are preprocessed and subject to stationarity tests and data consistency 

checks. Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error 

(MAPE) are used to assess the performance of model in short-, medium- and long-term forecasting, respec-

tively. From the experimental results, we show that the hybrid ARIMA–LSTM model enables to always out-

perform individual models, producing the lowest prediction errors over all forecasting horizons. The results 

show that incorporating classical statistical method with deep learning methods can lead to better accuracy 

and robustness in this electrical load prediction problem. 

Keywords: Electrical Load Forecasting, ARIMA and SARIMA, Long Short-Term Memory (LSTM), Hybrid 

Forecasting Models, Time-Series Modeling, Power System Planning, Energy Demand Prediction 

1. Introduction 

Electrical load forecasting is an essential part of the operation, planning and energy management process of the 

modern power system. Predicting the demand for electricity accurately helps grid operators balance supply and de-

mand in real time, schedule generation optimally, reduce operational costs, and helps maintain the reliability of the 

system. The expansion of smart grids, large scale integration of renewable energy, and electrification of transportation 

have caused electricity consumption behavior to increasingly become complex, nonlinear, and time varying, making 

it difficult for conventional forecasting methods[1][2]. 

Traditional time-series approaches such as Autoregressive Integrated Moving Average (ARIMA) and Seasonal 

ARIMA (SARIMA) have been used for electrical load forecasting as they have a relatively simple mathematical 

structure and are easy to interpret. Modeling these are based on lineage of the models that model the linear trending 

and seasonality of the past load data. On the other hand, practical electricity demand is a dynamic process driven by 

diverse factors such as weather, human behavior, economic activity, and political interventions, which bring along 

complex nonlinear and non-stationary traits that the solely statistical methods cannot be maximally reliable [3]. 
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Deep Learning methods particularly Long Short-Term Memory (LSTM) networks have attracted great attention 

recently for load forecasting problems. LSTM models can learn long-term temporal dependencies in a time series 

and the complex nonlinear relationship of the time series data of electricity demand. Many studies have shown that 

LSTM-based models are more accurate than classical statistical models especially for medium- and long-term fore-

casting horizons [4] [5]. Deep learning, with its impressive prediction accuracy, lacks interpretability, requires more 

computing powers, and is sensitive to data quality. Moreover, recent studies [21] on short-term load forecasting also 

highlighted that combining classical time-series techniques with machine learning models can significantly improve 

predictive accuracy in modern power systems, particularly under complex and nonlinear demand patterns. 

To address the shortcomings of each modeling method on its own, hybrid forecasting frameworks that combine 

statistical models with deep learning methods have been proposed with promising results. Mixed models (for example 

ARIMA–LSTM) are applied in an attempt to capture linear and seasonal components with statistical method and 

model residuals as nonlinear patterns with neural networks. State-of-the-art studies show that these hybrid methods 

gain higher precision and resilience when compared with individual models across different forecasting horizons and 

applications [6][7].  

On the strength of these observations, this paper offers a wide-ranging examination of traditional time-series 

models (ARIMA and SARIMA) [8], a deep learning model (LSTM), and a combined ARIMA–LSTM [9] model for 

electrical load forecasting. We assess the performance and the stability of the models through several error metrics 

and for short-, medium-, and long-term forecasting horizons. The results obtained from this work are expected to be 

useful for practitioners on the use of hybrid modeling approaches for enhancing load forecasting performance in 

contemporary power systems. 

  

1.1 Contributions 

The contributions of this paper to the problem of electrical load forecasting are threefold. 

• Conducts a complete comparative study between ARIMA, SARIMA, LSTM and hybrid ARIMA–LSTM 

models in terms of different forecast horizons (short-term, mid-term, and long- term). 

• Proposes a hybrid ARIMA–LSTM model to combine linear, seasonal, and nonlinear components based on 

residual learning. 

• Model performance is tested based on MAE, RMSE and MAPE to show that the model is robust and can be 

reliably used for various forecasting purposes. 

• Spotlights research gaps and developing trends such as ensemble learning, transfer learning, XAI, and fed-

erated/edge-based forecasting for smart grid applications. 

The rest of the paper is organized as follows: Section 2 presents a brief literature review and provides background 

on related work on electric load forecasting, which are mainly classified into statistical methods, deep learning based 

models and hybrid models. In Section 3, we describe the methodology used and it includes data acquisition, pre-

processing and the implementation of statistical techniques, deep learning approaches and hybrid models. - Section 

4 provides the results and discussion of forecast performance at different horizons with comparisons on accuracy and 

robustness between models. Lastly, Section 5 completes the study by presenting the main conclusions and shedding 

a light on potential future research avenues in advanced load forecasting strategies. 

2. Literature Review 

Recent research on electrical load forecasting can be broadly categorized into four main directions: (i) classical 

statistical time-series models, (ii) deep learning-based approaches, (iii) hybrid forecasting frameworks, and (iv) 

emerging trends such as explainable AI and edge-based forecasting. 

2.1 Statistical Time series model 

For decades, statistical algorithms like ARIMA, SARIMA and exponential smoothing methods have been ex-

ploited in the electricity load forecasting area. These approaches use historical data to describe trends, seasonality 
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and autoregression features. The research (conducted 2020~2023) also validates the efficacy of ARIMA-based mod-

els for short-term forecasting considering stable demand condition [9]. However, they suffer in dynamic and non-

linear patterns as well as in the presence of external disturbances (e.g., extreme weather or policy changes) [10]. 

2.2 Deep Learning Based Forecasting 

The state-of-the-arts of electrical load forecasting have made great progress due to deep learning techniques, 

which can model nonlinear and long-term temporal correlations. For smart meter and wide-area grid datasets, the 

LSTM, GRU and CNN-LSTM models have been highly studied for load prediction use cases. After 2020, the models 

based on LSTM method are consistently better than traditional statistical methods in all indicators like MAE, RMSE, 

and MAPE especially for medium and long term forecasts [12][13][14]. However, deep learning models depend on 

big datasets and extensive hyperparameter space exploration as well as high computing power which may prevent 

real-time application. 

2.3 Hybrid Forecasting Models 

Hybrid forecasting methods have become popular for their capacity to capitalize on both the statistical and 

machine learning models. In such frameworks, linear and seasonal components are often captured by statistical mod-

els whereas the nonlinear residual patterns are modelled using machine learning or deep learning models. Recent 

studies between 2020 and 2025 show that hybrid ARIMA–LSTM, SARIMAX–LSTM models outperforms single 

models in terms of forecast accuracy, especially under complex demand adoptions and renewable integration [15][7]. 

Hybrid models perform better than isolated deep learning methods, but they can lead to complex system design and 

are more sensitive to overfitting. 

2.4 Emerging trend and Research Gaps 

Recent advancements on ensemble learning, transfer learning, explainable AI (XAI), federated/edge-based fore-

casting emphasize robustness and flexibility to smart grid environments, and have been reviewed in the literature for 

electrical load forecasting. Meta- and ensemble-learning frameworks that combine heterogeneous base models (e.g., 

tree-based methods and LSTM) have achieved improved prediction accuracy and interpretability, frequently leverag-

ing explainability tools such as SHAP to understand model behaviour [16]. Transfer learning and state-of-the-art deep 

architectures (i.e. Transformer‑based models) have shown better generalization and performance in low data condi-

tions [17]. Federated learning methods allow for joint model training over a large number of distributed devices while 

still being able to maintain the privacy of the data, but they introduce further computational and communication 

complexity overhead [18]. The author presents a AIOT enabled traffic congestion using Deep Neural Networks [19].  

The authors present a survey on Operating systems applications for applications of the Internet of things [20]. Alt-

hough there have been advances in either short‑term or long‑term horizons, comparable evaluation of statistical, deep 

learning and hybrid models on a common experimental framework is still lacking, which demonstrates the need for 

systematic benchmarking in multiple forecasting horizons. 

3. Methodology 

This part provides an overview of the designed forecasting platform that collects and assesses statistical, deep 

learning and hybrid models for estimating electrical load. The proposed approach aims at systematically capturing 

the linear, seasonal and nonlinear properties of electricity consumption via a several-stages modeling procedure. 

3.1 Data Acqusition and Preprocessing 

Using real historical hourly electricity load data, the proposed approach is examined experimentally. The da-

taset consists of time-indexed load values in conjunction with additional meteorological and calendar-based features. 

In order to guarantee data integrity and model reliability, a number of preprocessing operations are performed. 

To maintain the continuity of the load sequence, missing observations are filled with time-based interpolation. 

This detects extreme values using the interquartile range (IQR) method, and replaces these extreme values with sta-

tistically consistent estimates to ensure minimal distortions during model training. We applied min–max normaliza-

tion to all input features to ensure stable convergence of the neural network during training, defined as: 
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              𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                    (1)           

The Augmented Dickey–Fuller (ADF) test is applied on the load series to check the stationarity of the series. If 

non-stationarity is detected, then differencing is performed. Also, we extracted temporal features such as, hour of the 

day, day of the week, and month of the year, to better learn periodic demand profiles. 

3.2 ARIMA Model  

The ARIMA model is employed to capture linear dependencies in the electricity load series. An ARIMA (𝑝, 𝑑, 𝑞)  

process is mathematically expressed as: 

The Autoregressive Integrated Moving Average (ARIMA) approach is used to detect linear dependencies in the elec-

tricity load series. Mathematically, an ARIMA (𝑝, 𝑑, 𝑞) process can be expressed as: 

 

 𝑌𝑡 = ∑ ∅𝑖𝑌𝑡−𝑖 + ∑ 𝜃𝑗𝜖𝑡−𝑗 + 𝜖𝑡
𝑞
𝑗=1

𝑝
𝑖=1           (2) 

 

where 𝑌𝑡 denotes the load at time 𝑡, 𝑝 is the autoregressive order, 𝑑 is the differencing order, 𝑞 is the moving 

average order, ∅𝑖 and 𝜃𝑗 are mode coefficients, and 𝜖𝑡 is a white noise error term. Using autocorrelation and partial 

autocorrelation diagnostics, the suitable parametric values are chosen. 

3.3 Seasonal ARIMA Model  

Since electricity demand tends to have seasonal variations that repeat over time, the model of the Seasonal ARIMA 

(SARIMA) is used to model the response. The SARIMA (𝑝, 𝑑, 𝑞) (𝑃, 𝐷, 𝑄)𝑚formulation includes a non-seasonal 

and a seasonal component and is written as: 

 Φ𝑃(𝐵𝑚)𝜙𝑝(𝐵)∇𝑚
𝐷 ∇𝑑𝑌𝑡 = Θ𝑄(𝐵𝑚)𝑄𝑞(𝐵)𝜖𝑡     (3) 

 Here, m is the seasonal period, 𝑃, 𝐷, and 𝑄 are the seasonal autoregressive, differencing, and moving average terms, 

respectively, and 𝐵 is the backshift operator. With this formulation, it can effectively model periodic load fluctua-

tions such as daily and weekly patterns. 

3.4 LSTM  

A LSTM neural network is employed in order to represent nonlinear and long-range temporal dependencies in the 

demand of electricity. The LSTM architecture has gating mechanisms that ensure the flow of information using 

memory cells is controlled. 

The working of an LSTM cell are characterized as below: 

Forget gate: 

 𝑓𝑖 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)  (4) 

Input gate: 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (5) 

Cell state update: 

      𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝑡𝑎𝑛ℎ𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)      (6) 

Output gate: 

         𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)         (7) 

Hidden state: 

  ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝐶𝑡)      (8) 

 

where 𝑥𝑡 represents the input vector, ℎ𝑡 is the hidden state, and 𝐶𝑡 denotes the internal memory cell.  
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3.5 Hybrid ARIMA-LSTM Forecasting Framework 

A hybrid ARIMA-LSTM model is created to combine the advantageous features of the statistical and deep learning 

models. The ARIMA model is first trained to reproduce the linear and seasonal structure, and as a result, a baseline 

forecast 𝑌̂𝑡
𝐴𝐸𝐼𝑀𝐴obtained. The remaining series is then calculated as follows: 

 𝑒𝑡 = 𝑌𝑡 − 𝑌̂𝑡
𝐴𝐸𝐼𝑀𝐴       (9) 

These residuals, which primarily contain nonlinear information, are modeled using an LSTM network to generate 

𝑒̂𝑡
𝐿𝑆𝑇𝑀 

. The final hybrid forecast is obtained by combining both components:  

The LSTM network is used to predict these residues that mainly include nonlinear information, 𝑒̂𝑡
𝐿𝑆𝑇𝑀 

The hybrid 

forecast is calculated as a sum of the two parts: 

          𝑌̂𝑡
𝐻𝑦𝑏𝑟𝑖𝑑

= 𝑌̂𝑡
𝐴𝐸𝐼𝑀𝐴 + 𝑒̂𝑡

𝐿𝑆𝑇𝑀         (10) 

The approach is an improved forecasting technique that considers the linear, seasonal and nonlinear demand attributes 

as a combined model that improves forecasting. 

3.6 Evalution Metrices: 

Forecasting performance is assessed using three widely adopted error measures: 

         𝑀𝐴𝐸 =
1

𝑁
∑ |𝑌𝑡 − 𝑌̂𝑡|𝑁

𝑡=1           (11) 

         𝑅𝑀𝑆𝐸 = √(
1

𝑁
∑ (𝑌𝑡 − 𝑌̂𝑡

𝑁
𝑡=1 )2       (12) 

where N denotes the number of observations. 

         𝑀𝐴𝑃𝐸 =
100

𝑁
 ∑ |

𝑌𝑡−𝑌̂𝑡

𝑌𝑡
|𝑁

𝑡=1           (13) 

Table.1 and Figure.1 signifies the whole process of the suggested hybrid ARIMA-LSTM forecasting framework.  

 

Table 1:Stepwise Algorithm of the Proposed Hybrid ARIMA–LSTM Forecasting Framework 

Step No. Description Reference Equation(s) 

Step 1 Collect historical electricity load data and remove duplicate or missing records. — 

Step 2 Normalize the input data to ensure numerical stability during training. Eq. (1) 

Step 3 Perform stationarity testing and apply differencing if non-stationarity is detected. Embedded in Eq. (2) 

Step 4 Identify optimal ARIMA parameters ((p, d, q)) using autocorrelation analysis. — 

Step 5 Train the ARIMA model and generate baseline load forecasts. Eq. (2) 

Step 6 Compute the residual series between actual and ARIMA-predicted values. Eq. (9) 

Step 7 Convert residual values into supervised learning sequences using time-lag win-

dows. 

— 

Step 8 Train the LSTM network to learn nonlinear residual patterns through gated 

memory operations. 

Eqs. (4)–(8) 

Step 9 Predict residual values using the trained LSTM model. — 

Step 10 Combine ARIMA forecasts and LSTM residual predictions to obtain the final hy-

brid forecast. 

Eq. (10) 

Step 11 Evaluate forecasting performance using MAE, RMSE, and MAPE metrics. Eqs. (11)–(13) 
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Step 12 Output the final hybrid forecast along with performance evaluation results. — 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Results and Discussions: 

Figure 1:Proposed Hybrid ARIMA-LSTM forecasting framework 
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This section presents a comprehensive evaluation of the forecasting performance of the ARIMA, SARIMA, LSTM, 

and hybrid ARIMA–LSTM models across multiple prediction horizons. Both quantitative metrics and visual analyses 

are employed to assess accuracy, robustness, and horizon-wise behavior. 

4.1  Overall forecasting accuracy: 

Table 2 provides the overall forecasting performance in the measured models of the models concerning MAE, RMSE, 

and MAPE. The hybrid ARIMA and LSTM model has the lowest values of errors of all measures, which means that 

it is the best predictor. 

The LSTM minimizes the forecasting errors much compared to classical statistical models because it is sensitive to 

the complicated nonlinear time-dependencies. The hybrid framework also enhances performance by acquiring resid-

ual nonlinear relationships that cannot be well modeled by the linear ARIMA constituent. To offer a summary of the 

multi-metric visualization in a compact format, Figure. 2 aids inverted normalized radar plot (the higher the better) 

with the hybrid model having the greatest area under all the criteria, which proves its balanced and consistent accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: OVERALL FORECASTING ACCURACY (LOWER IS BETTER) 

Model MAE RMSE MAPE (%) 

ARIMA 5.23 7.65 2.45 

SARIMA 4.89 7.12 2.30 

LSTM 3.78 5.43 1.89 

Hybrid ARIMA–LSTM 3.45 5.12 1.75 

 

4.2  Short-Term Forecasting Analysis: 

Figure 2 Normalized radar comparison of ARIMA, SARIMA, LSTM, and hybrid ARIMA–LSTM using inverted 

min–max scores for MAE, RMSE, and MAPE (higher is better). 



Volume 3, Issue 2, 2025                                                                              56 

 

 

Short-term forecasting performance is evaluated using MAE, as shown in Figure. 3. The hybrid ARIMA–LSTM 

model achieves the lowest short-term error, followed closely by the LSTM model. In contrast, ARIMA and SARIMA 

exhibit comparatively higher MAE values, reflecting their limited capability to adapt to short-term nonlinear varia-

tions. 

These results indicate that incorporating nonlinear residual learning significantly enhances short-term prediction ac-

curacy, particularly during rapid demand fluctuations. 

 

 

 

Figure 3: Short-term forecasting MAE comparison of ARIMA, SARIMA, LSTM, and hybrid ARIMA–LSTM (lower is better). 

4.3  Medium-Term Forecasting Analysis: 

Medium-term forecasting results are illustrated in Figure. 4. As the prediction horizon increases, error accumulation 

becomes more pronounced for classical statistical models. Both the LSTM and hybrid ARIMA–LSTM models main-

tain stable performance, demonstrating stronger generalization capabilities. 

Notably, the hybrid model consistently achieves the lowest MAE, indicating its ability to mitigate error propagation 

by jointly modeling linear trends and nonlinear residual structures. 

 

Figure 4: Medium-term forecasting MAE comparison of ARIMA, SARIMA, LSTM, and hybrid ARIMA–LSTM (lower is better). 
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4.4  Long-Term Forecasting Analysis: 

Long-term forecasting accuracy is presented in Figure. 5. Over extended horizons, ARIMA and SARIMA experience 

substantial performance degradation, highlighting their sensitivity to long-term uncertainty and accumulated errors. 

While the LSTM model performs better, it still exhibits increasing error variance. 

In contrast, the hybrid ARIMA–LSTM model demonstrates improved robustness and reduced error growth, confirm-

ing its suitability for long-range demand forecasting scenarios where stability and reliability are critical. 

 
Figure 5:Long-term forecasting MAE comparison of ARIMA, SARIMA, LSTM, and hybrid ARIMA–LSTM (lower is better). 

4.5  Horizon-Wise Comparative Evaluation: 

Table 3 provides a horizon-wise comparison of MAE values across short-term, medium-term, and long-term forecast-

ing tasks. The hybrid ARIMA–LSTM model consistently achieves the lowest MAE across all horizons. 

Performance gains are particularly evident in medium- and long-term predictions, highlighting the effectiveness of 

residual-based hybrid learning in reducing error accumulation and enhancing forecasting robustness over extended 

horizons. 

 

Table 3: MAE COMPARISON ACROSS FORECASTING HORIZONS 

Model Short-Term Medium-Term Long-Term 

ARIMA 4.15 5.60 6.95 

SARIMA 3.98 5.25 6.85 

LSTM 3.45 4.60 5.90 

Hybrid ARIMA–LSTM 3.25 4.20 5.65 

 

5. Conclusions and Future Work: 

5.1  Conclusions: 

In this work along a complete comparative and hybrid modeling framework of electricity load forecasting is presented, 

combining classical time-series methods with modern deep learning architectures. Statistical models — including 

ARIMA and SARIMA — were originally used to model linear relationships and seasonality present in past load data. 
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Simultaneously, a LSTM was used to catch nonlinear temporal relationships and long-range dependencies which are 

generally hard to model through traditional methods alone. 

A hybrid strategy of ARIMA–LSTM based on residual learning was developed to improve forecasting accuracy. The 

hybrid model then successfully combined statistical and neural paradigms by decomposing the load series into linear 

and nonlinear parts. Results of the experiment confirmed that the hybrid framework always outperformed models 

developed as individual models in all metrics and all forecasting horizons. Thus, it was particularly for the medium- 

and long-term predictions — where nonlinearities become ever more pronounced — that the largest gains in perfor-

mance were obtained. 

The results validate that classical time-series models are helpful in capturing the baseline trend and seasonality com-

ponent but are unable to address the complex and dynamic nature of load patterns when used alone. With higher 

flexibility to adapt, the capabilities of the two models complement each other, thus providing a solid and scalable 

solution for electricity demand forecasting in real-world systems when integrated through a hybrid approach. In con-

clusion, the proposed approach shows some promising results in terms of the overall accuracy, stability and ability 

to generalization that makes it suitable for actual operational energy management and planning systems. 

5.2  Future Work: 

Inspired of the achievable results from this study, there are multiple research directions which are offered to extend 

the effectiveness of the proposed framework of forecasting. Firstly, the incorporation of additional exogenous input 

variables such as near real-time meteorological data, economic indicators, and demand-side management signals may 

enrich the contextual information and thus enhance forecast accuracy. 

Second, deep learning models such as attention-based LSTM variants and Transformer-based temporal models can 

be explored to better model complex temporal dependencies. In particular, ensemble learning strategies which com-

bine several neural models may also provide higher robustness with respect to highly unstable demand situations. 

Third, future work can be undertaken to develop adaptive and online learning mechanisms where the forecasting 

model automatically updates as new data comes in. This kind of extension would find a great use in smart grid envi-

ronments typical for fast changing consumption behaviour. 

The inexact nature of hybrid modelling may also support a transformation into probabilistic forecasting, allowing not 

only for prediction intervals to be generated, but uncertainty estimates as well. This would furnish more informative 

guidance to decision making with respect to power system operation, risk-analysis and the energy market planning. 
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