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Abstract: The efficient operation, planning and reliability of modern power systems rely on accurate electri-
cal load forecasting. Accurate demand forecasting allows for optimal use of resources by cutting unnecessary
expenditures and improving grid stability. Since electricity usage is particularly volatile and nonlinear in time,
conventional forecasting methods frequently have trouble identifying the complex temporal patterns. Finally,
this study examines the performance of models based on time-series and deep learning for electrical load
forecasting over several time horizons. Several statistical models (Autoregressive Integrated Moving Average
— ARIMA and Seasonal ARIMA — SARIMA) are compared to a Long Short-Term Memory (LSTM) neural
network to evaluate their forecasting performance. In addition, a hybrid ARIMA-LSTM model is presented
to jointly reflect linear, seasonal, and nonlinear features of load series. The temporal and climatic-enhanced
historical electricity consumption data are preprocessed and subject to stationarity tests and data consistency
checks. Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error
(MAPE) are used to assess the performance of model in short-, medium- and long-term forecasting, respec-
tively. From the experimental results, we show that the hybrid ARIMA-LSTM model enables to always out-
perform individual models, producing the lowest prediction errors over all forecasting horizons. The results
show that incorporating classical statistical method with deep learning methods can lead to better accuracy

and robustness in this electrical load prediction problem.
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1. Introduction

Electrical load forecasting is an essential part of the operation, planning and energy management process of the

modern power system. Predicting the demand for electricity accurately helps grid operators balance supply and de-

mand in real time, schedule generation optimally, reduce operational costs, and helps maintain the reliability of the

system. The expansion of smart grids, large scale integration of renewable energy, and electrification of transportation

have caused electricity consumption behavior to increasingly become complex, nonlinear, and time varying, making

it difficult for conventional forecasting methods[1][2].

Traditional time-series approaches such as Autoregressive Integrated Moving Average (ARIMA) and Seasonal

ARIMA (SARIMA) have been used for electrical load forecasting as they have a relatively simple mathematical

structure and are easy to interpret. Modeling these are based on lineage of the models that model the linear trending

and seasonality of the past load data. On the other hand, practical electricity demand is a dynamic process driven by

diverse factors such as weather, human behavior, economic activity, and political interventions, which bring along

complex nonlinear and non-stationary traits that the solely statistical methods cannot be maximally reliable [3].
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Deep Learning methods particularly Long Short-Term Memory (LSTM) networks have attracted great attention
recently for load forecasting problems. LSTM models can learn long-term temporal dependencies in a time series
and the complex nonlinear relationship of the time series data of electricity demand. Many studies have shown that
LSTM-based models are more accurate than classical statistical models especially for medium- and long-term fore-
casting horizons [4] [5]. Deep learning, with its impressive prediction accuracy, lacks interpretability, requires more
computing powers, and is sensitive to data quality. Moreover, recent studies [21] on short-term load forecasting also
highlighted that combining classical time-series techniques with machine learning models can significantly improve
predictive accuracy in modern power systems, particularly under complex and nonlinear demand patterns.

To address the shortcomings of each modeling method on its own, hybrid forecasting frameworks that combine
statistical models with deep learning methods have been proposed with promising results. Mixed models (for example
ARIMA-LSTM) are applied in an attempt to capture linear and seasonal components with statistical method and
model residuals as nonlinear patterns with neural networks. State-of-the-art studies show that these hybrid methods
gain higher precision and resilience when compared with individual models across different forecasting horizons and
applications [6][7].

On the strength of these observations, this paper offers a wide-ranging examination of traditional time-series
models (ARIMA and SARIMA) [8], a deep learning model (LSTM), and a combined ARIMA-LSTM [9] model for
electrical load forecasting. We assess the performance and the stability of the models through several error metrics
and for short-, medium-, and long-term forecasting horizons. The results obtained from this work are expected to be
useful for practitioners on the use of hybrid modeling approaches for enhancing load forecasting performance in

contemporary power systems.

1.1 Contributions

The contributions of this paper to the problem of electrical load forecasting are threefold.

e Conducts a complete comparative study between ARIMA, SARIMA, LSTM and hybrid ARIMA-LSTM
models in terms of different forecast horizons (short-term, mid-term, and long- term).

e Proposes a hybrid ARIMA-LSTM model to combine linear, seasonal, and nonlinear components based on
residual learning.

e  Model performance is tested based on MAE, RMSE and MAPE to show that the model is robust and can be
reliably used for various forecasting purposes.

e  Spotlights research gaps and developing trends such as ensemble learning, transfer learning, XAlI, and fed-
erated/edge-based forecasting for smart grid applications.

The rest of the paper is organized as follows: Section 2 presents a brief literature review and provides background
on related work on electric load forecasting, which are mainly classified into statistical methods, deep learning based
models and hybrid models. In Section 3, we describe the methodology used and it includes data acquisition, pre-
processing and the implementation of statistical techniques, deep learning approaches and hybrid models. - Section
4 provides the results and discussion of forecast performance at different horizons with comparisons on accuracy and
robustness between models. Lastly, Section 5 completes the study by presenting the main conclusions and shedding

a light on potential future research avenues in advanced load forecasting strategies.

2. Literature Review

Recent research on electrical load forecasting can be broadly categorized into four main directions: (i) classical
statistical time-series models, (ii) deep learning-based approaches, (iii) hybrid forecasting frameworks, and (iv)
emerging trends such as explainable Al and edge-based forecasting.
2.1 Statistical Time series model

For decades, statistical algorithms like ARIMA, SARIMA and exponential smoothing methods have been ex-

ploited in the electricity load forecasting area. These approaches use historical data to describe trends, seasonality
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and autoregression features. The research (conducted 2020~2023) also validates the efficacy of ARIMA-based mod-
els for short-term forecasting considering stable demand condition [9]. However, they suffer in dynamic and non-
linear patterns as well as in the presence of external disturbances (e.g., extreme weather or policy changes) [10].
2.2 Deep Learning Based Forecasting

The state-of-the-arts of electrical load forecasting have made great progress due to deep learning techniques,
which can model nonlinear and long-term temporal correlations. For smart meter and wide-area grid datasets, the
LSTM, GRU and CNN-LSTM models have been highly studied for load prediction use cases. After 2020, the models
based on LSTM method are consistently better than traditional statistical methods in all indicators like MAE, RMSE,
and MAPE especially for medium and long term forecasts [12][13][14]. However, deep learning models depend on
big datasets and extensive hyperparameter space exploration as well as high computing power which may prevent
real-time application.
2.3 Hybrid Forecasting Models

Hybrid forecasting methods have become popular for their capacity to capitalize on both the statistical and
machine learning models. In such frameworks, linear and seasonal components are often captured by statistical mod-
els whereas the nonlinear residual patterns are modelled using machine learning or deep learning models. Recent
studies between 2020 and 2025 show that hybrid ARIMA-LSTM, SARIMAX-LSTM models outperforms single
models in terms of forecast accuracy, especially under complex demand adoptions and renewable integration [15][7].
Hybrid models perform better than isolated deep learning methods, but they can lead to complex system design and
are more sensitive to overfitting.
2.4 Emerging trend and Research Gaps

Recent advancements on ensemble learning, transfer learning, explainable AI (XAI), federated/edge-based fore-
casting emphasize robustness and flexibility to smart grid environments, and have been reviewed in the literature for
electrical load forecasting. Meta- and ensemble-learning frameworks that combine heterogeneous base models (e.g.,
tree-based methods and LSTM) have achieved improved prediction accuracy and interpretability, frequently leverag-
ing explainability tools such as SHAP to understand model behaviour [16]. Transfer learning and state-of-the-art deep
architectures (i.e. Transformer-based models) have shown better generalization and performance in low data condi-
tions [17]. Federated learning methods allow for joint model training over a large number of distributed devices while
still being able to maintain the privacy of the data, but they introduce further computational and communication
complexity overhead [18]. The author presents a AIOT enabled traffic congestion using Deep Neural Networks [19].
The authors present a survey on Operating systems applications for applications of the Internet of things [20]. Alt-
hough there have been advances in either short-term or long-term horizons, comparable evaluation of statistical, deep
learning and hybrid models on a common experimental framework is still lacking, which demonstrates the need for

systematic benchmarking in multiple forecasting horizons.

3. Methodology

This part provides an overview of the designed forecasting platform that collects and assesses statistical, deep
learning and hybrid models for estimating electrical load. The proposed approach aims at systematically capturing
the linear, seasonal and nonlinear properties of electricity consumption via a several-stages modeling procedure.

3.1 Data Acqusition and Preprocessing

Using real historical hourly electricity load data, the proposed approach is examined experimentally. The da-
taset consists of time-indexed load values in conjunction with additional meteorological and calendar-based features.
In order to guarantee data integrity and model reliability, a number of preprocessing operations are performed.

To maintain the continuity of the load sequence, missing observations are filled with time-based interpolation.
This detects extreme values using the interquartile range (IQR) method, and replaces these extreme values with sta-
tistically consistent estimates to ensure minimal distortions during model training. We applied min—max normaliza-

tion to all input features to ensure stable convergence of the neural network during training, defined as:
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X—Xmin
X = —"r 1
norm Xmax~Xmin ( )

The Augmented Dickey—Fuller (ADF) test is applied on the load series to check the stationarity of the series. If
non-stationarity is detected, then differencing is performed. Also, we extracted temporal features such as, hour of the
day, day of the week, and month of the year, to better learn periodic demand profiles.

3.2 ARIMA Model

The ARIMA model is employed to capture linear dependencies in the electricity load series. An ARIMA (p, d, q)
process is mathematically expressed as:

The Autoregressive Integrated Moving Average (ARIMA) approach is used to detect linear dependencies in the elec-

tricity load series. Mathematically, an ARIMA (p, d, q) process can be expressed as:
Y, =X, BV + X b€+ e 2)

where Y; denotes the load at time t, p is the autoregressive order, d is the differencing order, q is the moving
average order, @; and 6; are mode coefficients,and €, isa white noise error term. Using autocorrelation and partial
autocorrelation diagnostics, the suitable parametric values are chosen.

3.3 Seasonal ARIMA Model

Since electricity demand tends to have seasonal variations that repeat over time, the model of the Seasonal ARIMA
(SARIMA) is used to model the response. The SARIMA (p,d, q) (P, D, Q),,formulation includes a non-seasonal

and a seasonal component and is written as:

Pp(B™) ¢y (B)Vn VY, = 09(B™)Qq(B)e, )

Here, m is the seasonal period, P,D,and @ are the seasonal autoregressive, differencing, and moving average terms,
respectively, and B is the backshift operator. With this formulation, it can effectively model periodic load fluctua-
tions such as daily and weekly patterns.

3.4 LSTM

A LSTM neural network is employed in order to represent nonlinear and long-range temporal dependencies in the
demand of electricity. The LSTM architecture has gating mechanisms that ensure the flow of information using
memory cells is controlled.

The working of an LSTM cell are characterized as below:

Forget gate:

fi = o(Welhe—1, x] + bf)  (4)

Input gate:
it = o(Wilhe—1, x:] + b)) (5)
Cell state update:

Ct = ft O C—y +ip O tanhW,[h_q, x,] + b.) (6)
Output gate:
or = o(Wp[he—q, %] + bo) (7)
Hidden state:
ht = O¢ @ tanh (Ct) (8)

where x;, represents the input vector, h; is the hidden state, and C, denotes the internal memory cell.
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3.5 Hybrid ARIMA-LSTM Forecasting Framework
A hybrid ARIMA-LSTM model is created to combine the advantageous features of the statistical and deep learning
models. The ARIMA model is first trained to reproduce the linear and seasonal structure, and as a result, a baseline

forecast tAE IMA sbtained. The remaining series is then calculated as follows:

e, = Yt _ ?tAEIMA (9)
These residuals, which primarily contain nonlinear information, are modeled using an LSTM network to generate

5LSTM

er . The final hybrid forecast is obtained by combining both components:

The LSTM network is used to predict these residues that mainly include nonlinear information, étL STM The hybrid

forecast is calculated as a sum of the two parts:

oHybrid O A

The approach is an improved forecasting technique that considers the linear, seasonal and nonlinear demand attributes
as a combined model that improves forecasting.
3.6 Evalution Metrices:

Forecasting performance is assessed using three widely adopted error measures:

1 ~
MAE = -3, |V, — Vi (11)
1 ~
RMSE = [ASN,06-F02 )
where N denotes the number of observations.
100 Y:—Y,
MAPE = =7 ¥t | =~ (13)

Table.1 and Figure.1 signifies the whole process of the suggested hybrid ARIMA-LSTM forecasting framework.

Table 1:Stepwise Algorithm of the Proposed Hybrid ARIMA-LSTM Forecasting Framework

Step No. Description Reference Equation(s)
Step 1 Collect historical electricity load data and remove duplicate or missing records.
Step 2 Normalize the input data to ensure numerical stability during training. Eq. (1)
Step 3 Perform stationarity testing and apply differencing if non-stationarity is detected. Embedded in Eq. (2)
Step 4 Identify optimal ARIMA parameters ((p, d, q)) using autocorrelation analysis.
Step 5 Train the ARIMA model and generate baseline load forecasts. Eq. (2)
Step 6 Compute the residual series between actual and ARIMA -predicted values. Eq. (9)
Step 7 Convert residual values into supervised learning sequences using time-lag win-
dows.
Step 8 Train the LSTM network to learn nonlinear residual patterns through gated Egs. (4)—(8)

memory operations.

Step 9 Predict residual values using the trained LSTM model.

Step 10 Combine ARIMA forecasts and LSTM residual predictions to obtain the final hy- Eq. (10)

brid forecast.

Step 11 Evaluate forecasting performance using MAE, RMSE, and MAPE metrics. Egs. (11)—(13)
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Step 12 Output the final hybrid forecast along with performance evaluation results.

Hybrid ARIMA-LSTM Forecasting Framework

| Historical Electricity Load Data |

Data Cleaning & Preprocessing

* Remove Duplicates
* Handle Missing Values
* Qutlier Treatment (IQR)

Min—-Max Normalization (Eq, 1)

Stationarity Testing

* ADF Test
« Differencing if Required

ARIMA Model Development

« Parameter Selection (ACF / PACF)
« Train ARIMA (p.d.q) (Eq. 2)

l Baseline ARIMA Forecast ]

[ Residual = Actual — ARIMA Forecast (Eq. 9) |

Residual Sequence Construction
* Time-Lag Shding Window

LSTM Network Training

* Forget Gate (Eq. 4)

Input Gate (Eq. 5)

Cell Update (Eq. 6-7)
Hidden State Output (Eq. 8)

¥
| Residual Prediction via LSTM |
b

[ Hybrid Output = ARIMA Forecast + LSTM Residual (£q. 10) ]

2
Forecast Evaluation

= MAE (Eq. 11)
* RMSE (Eq. 12)
o MAPE (Eq. 13)

L 2
[ shoet - Medium- & Long Term Anatyss |

Figure 1:Proposed Hybrid ARIMA-LSTM forecasting framework

4. Results and Discussions:
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This section presents a comprehensive evaluation of the forecasting performance of the ARIMA, SARIMA, LSTM,
and hybrid ARIMA-LSTM models across multiple prediction horizons. Both quantitative metrics and visual analyses
are employed to assess accuracy, robustness, and horizon-wise behavior.

4.1 Overall forecasting accuracy:

Table 2 provides the overall forecasting performance in the measured models of the models concerning MAE, RMSE,
and MAPE. The hybrid ARIMA and LSTM model has the lowest values of errors of all measures, which means that
it is the best predictor.

The LSTM minimizes the forecasting errors much compared to classical statistical models because it is sensitive to
the complicated nonlinear time-dependencies. The hybrid framework also enhances performance by acquiring resid-
ual nonlinear relationships that cannot be well modeled by the linear ARIMA constituent. To offer a summary of the
multi-metric visualization in a compact format, Figure. 2 aids inverted normalized radar plot (the higher the better)

with the hybrid model having the greatest area under all the criteria, which proves its balanced and consistent accuracy.

MAE

Figure 2 Normalized radar comparison of ARIMA, SARIMA, LSTM, and hybrid ARIMA-LSTM using inverted
min—max scores for MAE, RMSE, and MAPE (higher is better).

Table 2: OVERALL FORECASTING ACCURACY (LOWER IS BETTER)

Model MAE RMSE MAPE (%)
ARIMA 523 7.65 2.45
SARIMA 4.89 7.12 2.30
LSTM 3.78 543 1.89
Hybrid ARIMA-LSTM 3.45 5.12 1.75

4.2 Short-Term Forecasting Analysis:
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Short-term forecasting performance is evaluated using MAE, as shown in Figure. 3. The hybrid ARIMA-LSTM
model achieves the lowest short-term error, followed closely by the LSTM model. In contrast, ARIMA and SARIMA
exhibit comparatively higher MAE values, reflecting their limited capability to adapt to short-term nonlinear varia-
tions.

These results indicate that incorporating nonlinear residual learning significantly enhances short-term prediction ac-

curacy, particularly during rapid demand fluctuations.
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Figure 3: Short-term forecasting MAE comparison of ARIMA, SARIMA, LSTM, and hybrid ARIMA-LSTM (lower is better).

4.3 Medium-Term Forecasting Analysis:

Medium-term forecasting results are illustrated in Figure. 4. As the prediction horizon increases, error accumulation
becomes more pronounced for classical statistical models. Both the LSTM and hybrid ARIMA—-LSTM models main-
tain stable performance, demonstrating stronger generalization capabilities.

Notably, the hybrid model consistently achieves the lowest MAE, indicating its ability to mitigate error propagation

by jointly modeling linear trends and nonlinear residual structures.

MAE
w

AR o PRI P LSRR o AR A VST

\,\YVQ\'\

Figure 4: Medium-term forecasting MAE comparison of ARIMA, SARIMA, LSTM, and hybrid ARIMA-LSTM (lower is better).
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4.4 Long-Term Forecasting Analysis:

Long-term forecasting accuracy is presented in Figure. 5. Over extended horizons, ARIMA and SARIMA experience
substantial performance degradation, highlighting their sensitivity to long-term uncertainty and accumulated errors.
While the LSTM model performs better, it still exhibits increasing error variance.

In contrast, the hybrid ARIMA-LSTM model demonstrates improved robustness and reduced error growth, confirm-

ing its suitability for long-range demand forecasting scenarios where stability and reliability are critical.

MAE

ABAP AW ST T
pR R = b a BRI A\

Figure S:Long-term forecasting MAE comparison of ARIMA, SARIMA, LSTM, and hybrid ARIMA-LSTM (lower is better).

4.5 Horizon-Wise Comparative Evaluation:

Table 3 provides a horizon-wise comparison of MAE values across short-term, medium-term, and long-term forecast-
ing tasks. The hybrid ARIMA-LSTM model consistently achieves the lowest MAE across all horizons.

Performance gains are particularly evident in medium- and long-term predictions, highlighting the effectiveness of
residual-based hybrid learning in reducing error accumulation and enhancing forecasting robustness over extended

horizons.

Table 3: MAE COMPARISON ACROSS FORECASTING HORIZONS

Model Short-Term Medium-Term Long-Term
ARIMA 4.15 5.60 6.95
SARIMA 3.98 5.25 6.85

LSTM 3.45 4.60 5.90

Hybrid ARIMA-LSTM 3.25 4.20 5.65

5. Conclusions and Future Work:

5.1 Conclusions:

In this work along a complete comparative and hybrid modeling framework of electricity load forecasting is presented,
combining classical time-series methods with modern deep learning architectures. Statistical models — including

ARIMA and SARIMA — were originally used to model linear relationships and seasonality present in past load data.
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Simultaneously, a LSTM was used to catch nonlinear temporal relationships and long-range dependencies which are
generally hard to model through traditional methods alone.

A hybrid strategy of ARIMA-LSTM based on residual learning was developed to improve forecasting accuracy. The
hybrid model then successfully combined statistical and neural paradigms by decomposing the load series into linear
and nonlinear parts. Results of the experiment confirmed that the hybrid framework always outperformed models
developed as individual models in all metrics and all forecasting horizons. Thus, it was particularly for the medium-
and long-term predictions — where nonlinearities become ever more pronounced — that the largest gains in perfor-
mance were obtained.

The results validate that classical time-series models are helpful in capturing the baseline trend and seasonality com-
ponent but are unable to address the complex and dynamic nature of load patterns when used alone. With higher
flexibility to adapt, the capabilities of the two models complement each other, thus providing a solid and scalable
solution for electricity demand forecasting in real-world systems when integrated through a hybrid approach. In con-
clusion, the proposed approach shows some promising results in terms of the overall accuracy, stability and ability
to generalization that makes it suitable for actual operational energy management and planning systems.

5.2 Future Work:

Inspired of the achievable results from this study, there are multiple research directions which are offered to extend
the effectiveness of the proposed framework of forecasting. Firstly, the incorporation of additional exogenous input
variables such as near real-time meteorological data, economic indicators, and demand-side management signals may
enrich the contextual information and thus enhance forecast accuracy.

Second, deep learning models such as attention-based LSTM variants and Transformer-based temporal models can
be explored to better model complex temporal dependencies. In particular, ensemble learning strategies which com-
bine several neural models may also provide higher robustness with respect to highly unstable demand situations.
Third, future work can be undertaken to develop adaptive and online learning mechanisms where the forecasting
model automatically updates as new data comes in. This kind of extension would find a great use in smart grid envi-
ronments typical for fast changing consumption behaviour.

The inexact nature of hybrid modelling may also support a transformation into probabilistic forecasting, allowing not
only for prediction intervals to be generated, but uncertainty estimates as well. This would furnish more informative

guidance to decision making with respect to power system operation, risk-analysis and the energy market planning.
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