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Abstract: Early detection of diabetes is essential to prevent complications like diabetic retinopathy. This study 

evaluates the effectiveness of five algorithms—Convolutional Neural Networks (CNN), Random Forest, 

Support Vector Machines (SVM), Gradient Boosting, and K-Nearest Neighbors (KNN)—in detecting diabetes 

through retinal imaging. Using a dataset of 15,000 retinal images, models were assessed for accuracy, precision, 

recall, and F1-score, with image preprocessing and data augmentation such as Rotation (θ\thetaθ), Flipping 

(Horizontal and Vertical), Zooming (zzz), Brightness Adjustments, CLAHE, sharpening filters and Gaussian 

Blur are applied to enhance performance. CNN beat the other models, reaching a 97.2% accuracy, indicating 

its supremacy in predicting performance. The comparison research also showed distinct strengths and limits 

of each method, demonstrating their usefulness across diverse diagnostic circumstances. These results 

underline the transformational potential of machine learning in medical diagnostics, notably for retinal 

imaging-based diabetes identification. 

Keywords: Convolutional Neural Networks (CNN), Diabetic retinopathy, Retinal imaging, Data 
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1. Introduction 

Diabetes mellitus, now seen as a worldwide pandemic, is getting more and more widespread. Among the crip-

pling symptoms of diabetes, which is defined by consistently high blood glucose levels brought on by either insuffi-

cient insulin generation or breakdown, is retinopathy, nephropathy, and neuropathy. These are the retinopathy, 

nephropathy, and neuropathy associated with diabetes [1].   

The International Diabetes Federation projected that 463 million people globally have diabetes as of 2019, and 

they predict this figure to climb further [2]. Adult diabetic retinopathy is a primary cause of vision loss and blindness, 

which stresses the critical need for early and accurate diagnostic procedures [3]. 

Due to medical imaging, with the advancement of medical technologies, ophthalmologists are able to capture 

comprehensive images of the retina showing early signs of changes associated with the disease, such as OCT and HR 

retinal imaging. Therefore, because these imaging modalities are capable of much more accurate diagnoses coupled 

with state-of-the-art data processing techniques, these imaging modalities assist physicians in taking prompt measures 

to avoid the advancement of the disease to an advanced stage [31]. 

With big picture repositories increasingly available, plus the capability to scan such pictures with machine learn-

ing algorithms, observing retinal imaging has come into focus with research on the prediction of diabetes. By com-

bining powerful deep learning algorithms with large datasets in retinal imaging, researchers can detect small abnormal 

features and patterns indicative of early diabetes [5]. This approach improves early detection and diagnostic accuracy 
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[6] [32]; therefore, it paves the way for personalized and sustained treatments of health.  

This paper examines and evaluates five well-known machine learning algorithms, namely K-Nearest Neighbors 

(KNN), Gradient Boosting, Random Forest, Support Vector Machines (SVM), and Convolutional Neural Networks 

(CNN), in the prediction of diabetes using retinal images. These algorithms are being analyzed in order to determine 

the most effective method for the early identification of diabetic retinopathy and, subsequently, to fuel innovation in 

patient outcomes and diagnostics technique evolution toward perfection [33]. 

2. Literature Review 

Machine learning approaches have considerably enhanced diabetes prediction models. Early strategies were 

mostly based on statistical approaches, such as logistic regression and decision trees that were developed using patient 

demographic and clinical data in order to predict diabetes risk [7]. However, these strategies were limited in their 

capabilities for complex pattern capture in large datasets, especially as healthcare data became more voluminous and 

detailed [34]. Deep learning, especially CNNs, has brought a new phase in the prediction and detection of diabetes 

problems, particularly diabetic retinopathy. These CNNs are now capable of automatic hierarchical feature extraction 

from images, generally outperforming traditional models, such as Support Vector Machines and Random Forests, in 

interpreting retinal images [8]. Gulshan et al. demonstrated CNNs' efficient performance in detecting DR, comparable 

to that of human specialists [9] [35]. Improvements to these models have been explored in later studies, such as hybrid 

methods that boost accuracy and robustness by fusing CNNs with other algorithms. For example, Voets et al. under-

took a comparison research of CNNs, SVMs, and Random Forests, demonstrating that CNNs deliver greater perfor-

mance in large-scale retinal image classification jobs  [10]. Furthermore, the ability of gradient boosting machines 

(GBMs) to manage imbalanced datasets—a significant issue in medical imaging—has been investigated [11]. Studies 

stress the significance of big, diverse datasets to adequately train these models and reduce overfitting [12] [36].  

A crucial gap in the previous research is the concentration on binary classification tasks, where models primarily 

differentiate between healthy and DR-affected eyes rather than predicting the onset of diabetes itself [13]. Another 

problem is the generalizability of models trained on homogeneous datasets, which may perform poorly across diverse 

populations [14].  This is critical because model performance may vary dramatically across different demographic 

groups, influencing clinical decision-making in a variety of situations [37]. 

The deep learning models that became very popular in recent years have raised doubts about the interpretability 

and transparency of their "black box" nature in therapeutic practice. Although CNNs give very high accuracy, their 

lack of explainability creates several obstacles to their application in healthcare contexts where interpretability plays 

a crucial role [15]. Recently, some attempts have been made to embed explainable AI (XAI) methods into deep learn-

ing models, though these approaches are still in their early stages [16] [38]. 

More recently, in the years 2022 and 2023, works have been performed to overcome the aforementioned draw-

backs by proposing new architectures and exploring various combinations of multi-modal information. As a repre-

sentative example, the transformers-class of architectures originally conceived for NLP demonstrate increasing evi-

dence of performance enhancement and explainability when applied to retinal image analysis [17]. Furthermore, there 

is further interest in the integration of the retinal images with other clinical data, such as genetic information and 

patient history, to enhance the accuracy of the prediction and to gain a more complete understanding of the develop-

ment of diabetes [18] [39]. 

Federated learning, which enables models to be trained across decentralized datasets without compromising 

patient privacy, is gaining momentum as a strategy to increase model generalizability across different populations 

[19]. This method is especially significant in medical environments, where data privacy is crucial. Studies in 2022 

confirmed the usefulness of federated learning in diabetic retinopathy diagnosis, presenting it as a potential approach 

for large-scale, privacy-preserving model training [20] [40].  

Recent research has focused on extending deep learning models to bigger and more diversified datasets, gener-

ally gathered via multi-centre partnerships, which are critical for generating accurate and generalizable models for 

real-world applications [21]. This method is particularly relevant in low-resource settings, where access to high-qual-
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ity retinal imaging may be restricted [22] [45]. Furthermore, research from 2022 and 2023 has investigated the inte-

gration of wearable technology and continuous glucose monitoring devices with deep learning models, resulting in 

real-time predictions and individualized treatments for diabetes control [23] [41]. The efficiency and accuracy of 

diabetic retinopathy recognition in 2022 were considerably improved by Zhu et al.'s demonstration of the implemen-

tation of transfer learning, which involves applying pre-trained models to new datasets [24]. 

A crucial area of research for the creation of deep learning models for the diagnosis of diabetic retinopathy is 

explainability. The introduction of explainable AI methods into deep learning models has made significant progress 

in recent years, reducing the gap between high accuracy and clinical interpretability [25] [42]. Understanding model 

flaws and keeping fairness across different patient groups is also important to the ethical use of AI in healthcare [26]. 

Deep learning models must be generalized appropriately, and model fairness must be ensured to avoid ethical 

concerns [43]. As the field progresses, future research should focus on incorporating multi-modal data and developing 

innovative technologies to create more accurate and clinically relevant models [27–30][44]. 

The article consists of key parts that provide a brief insight into the utility of retinal imaging in identifying 

diabetes. Section 1 discusses the global diabetes pandemic, emphasizing the importance of early detection and modern 

medical imaging technologies, with retinal scans as an example. In Section 2, past research is reviewed with a focus 

on problems with machine learning applications for diabetic retinopathy. These include imbalanced datasets and mod-

els that lack generalizability. The approach is explained in Section 3 along with the preprocessing methods (noise 

reduction and contrast enhancement). The five models considered are CNN, Random Forest, SVM, Gradient Boost-

ing, and KNN. Section 4 describes that the models are compared with CNN achieving 97.2% accuracy, while the 

others did not perform well cause of poorly extracted features and unbalanced data. The final section outlines future 

possibilities, including federated learning to protect privacy during training and explainable AI for interpretable mod-

els. It emphasizes the need for more diverse datasets and scalable methods to enhance the applicability of these models 

in healthcare. 

3. Methodology 

3.1. Dataset and Preprocessing 

We made use of four publicly accessible datasets, which included retinal images labelled with different stages 

of diabetic retinopathy:  

 APTOS 2019 

 MESSIDOR 

 IDRiD 

 DIARETDB1. 

After combining the datasets, 15,000 photos in total were produced via augmentation as shown in Table 1. 

Table 1. Dataset Composition 

Datasets Original Count Post-Augmentation 

APTOS 3,662 10,719 

MESSIDOR 1,200 3,308 

IDRiD 516 1,415 

DIARETDB1 89 213 

Total 5,467 15,000 
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3.2. Data Augmentation 

Different Augmentation techniques we have used to increase the quantity of datasets as described in Figure 1 

and to improve model generalization are as follows: 

 Rotation (θ\thetaθ), 

 Flipping (Horizontal and Vertical), 

 Zooming (zzz) 

 Brightness Adjustments. 

The equation for data augmentation is as follows: 

𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝐷𝑎𝑡𝑎 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐷𝑎𝑡𝑎 + 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠       (1) 

 

 

 

      Figure 1. Class Distribution Before and After Augmentation 

3.3. Image Preprocessing 

 To maintain consistency across datasets, each photo was compressed to 224x224 pixels and scaled to a range of 

[0,1]. To increase the attributes and quality of the photographs as shown in Figure 2, numerous preprocessing proce-

dures were utilized, such as:  

 To boost contrast in low-light zones, we employed CLAHE (contrast-limited adaptive histogram equal-

ization). 

 To emphasize the outside borders of retinal structures like blood vessels and lesions, a sharpening filter 

was utilized. 

 By cropping and zooming the photographs at random, this augmentation strategy was applied to boost 

the diversity of training data.  

 Gaussian Blur was utilized to eliminate noise and increase the sharpness of image attributes. 

The equation for the Normalization Formula is as follows: 

𝐼𝑛𝑜𝑟𝑚 =
𝐼−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛
              (2) 

The equation for Gaussian Blur is as follows: 



Journal of Computational Informatics and Business                                                        

Volume 1, Issue 1, 2024 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−

𝑥2+𝑦2

2𝜎2             (3) 

The equation for Histogram Equalization is as follows: 

𝐼^(𝑥, 𝑦) =  
𝑐𝑑𝑓(𝐼(𝑥,𝑦))−𝑐𝑑𝑓𝑚𝑖𝑛

(𝑀×𝑁)−𝑐𝑑𝑓𝑚𝑖𝑛
× (𝐿 − 1)         (4) 

 

Figure 2. Example of Augmented Images After preprocessing 

4. Models Architecture 

4.1. Convolutional Neural Network (CNN) 

 The CNN architecture is designed to automatically extract features from the input images. It consists of three 

convolutional layers, max-pooling layers, and two fully connected layers followed by a softmax output layer. The 

Cross-Entropy Loss function was used to minimize classification error.  

The equation for Cross-Entropy Loss Function is as follows: 

𝐿 = ∑ 𝒚𝒊
𝑵
𝒊=𝟏 log(𝑦𝑖)           (5) 

4.2. Random Forest 

 The Random Forest model is an ensemble of decision trees. Each tree is built on a random subset of features 

and samples, which helps reduce variance and improve generalization. The final prediction is determined by a majority 

vote of all the trees. Gini Impurity was used to evaluate the quality of each split.  

The equation for Gini Impurity is given below: 

𝐺 = 1 − ∑ 𝑝𝑘
2𝐾

𝑘=1            (6) 

4.3. Support Vector Machine (SVM) 

 The SVM model attempts to find the optimal hyperplane that separates different classes by maximizing the 

margin between them. The model uses Hinge Loss to enforce correct classification with a sufficient margin between 

the classes. The equation for Hinge Loss is given below: 

𝐿 = 𝑚𝑎𝑥(0,1 − 𝑥𝑖 ⋅ 𝑓(𝑥𝑖))           (7) 
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4.4. Gradient Boosting 

 Gradient Boosting builds decision trees sequentially, where each tree corrects the errors made by the previous 

tree. The model uses Log-Loss to minimize the classification error.  

The equation for the Log-Loss function is given below: 

𝐿 = − ∑ [𝑦𝑖𝑙𝑜𝑔(𝑦𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦𝑖)]𝑁
𝑖=1        (8) 

4.5. K-Nearest Neighbors (KNN) 

 The KNN algorithm classifies data points based on the majority label of the k-nearest neighbors. The distance 

between data points is measured using Euclidean Distance. 

The equation for the Euclidean Distance is given below: 

𝑑(𝑝, 𝑞) = √∑ (𝑝𝑖 − 𝑞𝑖)
2𝑛

𝑖=1           (9) 

5. Model Training and Validation 

 In the process of training and validating our models, we dedicated 80% of our dataset to training. The remaining 

20% was evenly split between validation and testing. This strategic distribution was designed to meticulously evaluate 

each model's effectiveness and adaptability. 

5.1. Fine-Tuning the Details 

 We didn't just settle on arbitrary values; instead, we meticulously tuned our models to find the optimal settings. 

Our approach involved a mix of grid and random searches to refine the parameters, ensuring we extracted the most 

robust performance from each model. 

 Table 2 offers a concise summary of the different hyperparameters tested for each model, highlighting the flex-

ibility and thoroughness of the optimization process to extract the best performance for diabetes detection. 

5.2. Loss function 

 Each model's learning algorithm was paired with a tailored loss function to enhance learning efficacy: 

 CNN optimized with cross-entropy loss, a staple for multi-class categorization. 

 Random Forest utilized Gini impurity, assessing the quality of data splits. 

 SVM governed by hinge loss, perfect for maximizing the margin of classification. 

 Gradient Boosting drive by log loss, which adjusts probability outputs. 

 KNN is not applicable, as KNN operates on nearest neighbours without direct loss minimi-

zation. 

5.3. Visual Insight 

 To truly understand our models' learning curves, we visualized their performance across various epochs.      In 

Figures 3 and 4, the performance of the CNN model is shown across 20 epochs. The accuracy graph demonstrates 

that although training accuracy generally increases but varies little, validation accuracy fluctuates significantly, indi-

cating some overfitting. On the loss graph, the validation loss is more erratic than the training loss, indicating that 

while the model is learning, it is not generalizing well enough across validation data. 

 

 

 

 

Table 2. Parameter Optimization for following ML Models 
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The table above summarizes the hyperparameters investigated for CNN, Random Forest, SVM, Gradient  

 

Boosting, and KNN algorithms. The CNN scans over filters: 32, 64, 128; kernel size is kept fixed at 3x3, while 

learning rates of 0.001, 0.01, 0.1 have been tested. For random forests, the number of trees are [50, 100, 200]; 

maximum depth: 10, None; minimum samples per leaf: 1, 2, 4. The ranges for the C parameter yielding the best 

performance for the tuning of SVM include 0.1, 1, and 10, while for gamma, the values include 0.01, 0.1, and 'scale'. 

Gradient Boosting studies boosting stages of (50, 100, 150), learning rates of (0.01, 0.05, 0.1), and max depth of 3, 5, 

and 7. Finally, KNN parameters include neighbor counts of 3, 5, and 7, and distances include 'manhattan', 'euclidean', 

which had to be corrected from 'encludian'. 

 

 

Model 

 

Parameter 

 

Explored Values 

 

 

 

CNN 

 

Number of Filters 

 

32, 64, 128 

 

Kernel Size 

 

3x3 

 

Learning Rate 

 

0.001, 0.01, 0.1 

 

 

 

Random Forest 

 

Number of Trees 

 

50, 100, 200 

 

Max Depth 

 

10, None 

 

Min Samples Per Leaf 

 

1, 2, 4 

 

 

SVM 

 

C Parameter 

 

0.1, 1, 10 

 

Gamma 

 

0.01, 0.1, 'scale' 

 

 

 

Gradient Boosting 

 

Number of Boosting 

Stages 

 

50, 100, 150 

 

Learning Rate 

 

0.01, 0.05, 0.1 

 

Max Depth 

 

3, 5, 7 

 

 

KNN 

 

Number of Neighbours 

 

3, 5, 7 

 

Distance Metric 

'manhattan', 'encludian' 
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Figure 3. CNN Training versus Validation Accuracy 

 

 

Figure 4. CNN Training versus Validation Loss 

The Random Forest model's training accuracy increases continuously, as displayed in Figures 5 and 6, but its 

validation accuracy fluctuates and does not significantly improve, which may indicate overfitting. The loss graph 

further demonstrates the overfitting problem with a steady decline in training loss and a relatively flat validation loss. 
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Figure 5. Random Forest Training versus Validation Accuracy 

 

Figure 6. Random Forest Training versus Validation Loss 

While the validation accuracy of the SVM model continues to be lower and inconsistent, Figures 7 and 8 demon-

strate that the training accuracy of the model is steady with only minor oscillations. The loss graph indicates that 

although the validation loss varies, the training loss drops steadily, suggesting that the model has difficulty generaliz-

ing. 
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Figure 7. SVM Training versus Validation Accuracy 

 

Figure 8. SVM Training versus Validation Loss 

The Gradient Boosting model's training accuracy increases gradually, as shown in Figures 9 and 10, but its 

validation accuracy fluctuates greatly. The training loss on the loss graph gradually decreases, while the validation 

loss fluctuates, indicating an overfitting tendency overall. 
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Figure 9. Gradient Boosting Training versus Validation Accuracy 

 

Figure 10. Gradient Boosting Training versus Validation Loss 

The KNN model's training accuracy is constant, as shown in Figures 11 and 12, while its validation accuracy 

fluctuates more and is consistently lower. The loss graph shows a distinct difference between the validation loss, 

which stays high, and the training loss, which drops, indicating that the model is overfitting to the training data and 

finding it difficult to function effectively on unknown data. 
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Figure 11. KNN Training versus Validation Accuracy 

 

Figure 12. KNN Training versus Validation Loss 

6. Results And Analysis 

 This pivotal section not only delineates the outcomes harvested from meticulous experimentation but also ac-

centuates the efficacy of the deployed models in diagnosing diabetic retinopathy. 
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6.1. Performance Metrics 

Our evaluation encapsulates the performance of each model, enumerated through critical metrics that reflect 

their diagnostic acumen. Table 7 will provide us with the performance showdown of how each model performs well 

in retaining their performance matrices. 

 Accuracy gauges the overall exactitude of each model across varied classes, offering a holistic view of 

model performance. It is calculated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
          (10)  

where TPTPTP, TNTNTN, FPFPFP, and FNFNFN represent the true positives, true negatives, false positives, 

and false negatives, respectively. 

 Precision will illustrate the algorithm's accuracy in forecasting positive labels, vital for decreasing false 

positives. The formula is: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
           (11) 

 Recall (Sensitivity) evaluates the model's adeptness in identifying all real Positives, critical for scenar-

ios where missing a case might be disastrous. It is defined as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
            (12) 

 F1-Score demonstrates a balance between Precision and Recall, a critical measure of class distribution 

varies. It is computed using: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
)         (13) 

 ROC-AUC is the model's ability to distinguish between the classes at different threshold values is 

shown by the area under the receiver operating characteristic curve. Better model performance is indi-

cated by a higher AUC value. 

𝐴𝑈𝐶 ≈ ∑ ( (𝐹𝑃𝑅𝑖 + 1 − 𝐹𝑃𝑅𝑖)  ×  
𝐹𝑃𝑅𝑖+1−𝐹𝑃𝑅𝑖

2
)𝑛−1

𝑖=1       (14) 

Table 3. Comparative Performance Metrics 

Model Accuracy Precision Recall F1-Score ROC-AUC 

CNN 97.2% 96.8% 97.0% 96.9% 99.0% 

Random Forest 85.0% 84.5% 85.2% 84.8% 90.5% 

SVM 82.5% 82.0% 83.0% 82.5% 88.3% 

Gradient Boosting 87.1% 86.7% 87.5% 87.0% 92.2% 

KNN 78.2% 77.5% 78.5% 78.0% 85.0% 

 

Figure 13 depicts the overall procedure for assessing several machine-learning models for diabetes diagnosis in 

the form of a flowchart. To enhance the performance of the model, preprocessing and data augmentation are applied 

to the input data first. On the ready-made dataset, five models—CNN, Random Forest, SVM, Gradient Boosting, and 

KNN—are trained and verified. Following validation, the models are put to the test, and measures like as ROC-AUC, 
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accuracy, precision, recall, and F1-score are used to evaluate the models' performance. With an accuracy of 97.2%, 

CNN led the field in the findings, followed by Random Forest and other models. 

 

Figure 13. Machine learning models evaluation process 

Similarly, Figure 14 shows the graphical representation of the performance matrices of all the classification 

models in the form of a bar chart. The chart visually demonstrates how each model compares across these crucial 

classification metrics. 
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Figure 14. Shows the comparison of all the classification models by performance matrices  

6.2. Comparative analysis 

In addition to comprehensive tabulations, we use graphical depictions to graphically highlight differences in 

relative performance across models. They are presented here to clearly illustrate the discriminating power of each 

model at different threshold values, these curves illustrate the sensitivity-specificity trade-off that is intrinsic to each 

method. We also show the graphical representations like confusion matrices, that provide a more intuitive, visual 

understanding of how well a model is performing. Confusion matrices of each model help us highlight the relative 

performance across different classes, which might not be easily understandable from numeric values alone.  

 We can see from the confusion matrices how well each model classified the four datasets: DIARETDB1, MES-

SIDOR, IDRID, and APTOS.  

Figure 15 describes when it comes to datasets such as APTOS and DIARETDB1, where it exhibits negligible 

mistakes, the CNN model is clearly the most accurate. Nevertheless, it still has some trouble distinguishing MESSI-

DOR from APTOS and MESSIDOR from IDRID. Comparably,  

Figure 16 shows that the Gradient Boosting model does well overall but finds it more difficult to separate MES-

SIDOR from IDRID when using these same datasets.  

In contrast, Figure 17 depicts that the KNN model exhibits more pronounced mistakes, particularly when at-

tempting to distinguish between APTOS, MESSIDOR, and IDRID, indicating that it struggles with overlapping fea-

tures in the data.  

From Figure 18 we can understand that the Random Forest model performs rather well, especially when using 

the DIARETDB1 dataset, but it suffers from some misunderstanding about APTOS and MESSIDOR, much like the 

other models.   

From Figure 19 we know that the SVM model has the highest percentage of misclassifications, demonstrating 

its greatest difficulty in differentiating between MESSIDOR and IDRID. Overall, the CNN model outperforms the 

others, with SVM having the most difficulty with classification accuracy. These matrices show us how each model 

responds to the actual complexity of the data, in addition to the numbers. 
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Figure 15. Shows the CNN Confusion Matrix 

 
Figure 16. Shows the Gradient Boosting Confusion Matrix 
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Figure 17. Shows the KNN Confusion Matrix 

 

Figure 18. Shows the Random Forest Confusion Matrix 
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Figure 19. Shows the SVM Confusion Matrix 

We have also depicted the roc curves of all the models mutually as follows: 

 

Figure 20. Shows the mutual ROC Curves of all the Models  

As shown in Figure 20, these matrices give a thorough view of each model's prediction accuracy for different 

stages of diabetic retinopathy and are presented following the ROC curves. They deepen our comprehension of the 

operational benefits and drawbacks of each model by explaining true negatives, true positives, and false negatives. 
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7. Discussion 

7.1. Performance Interpretation 

 This section examines the performance differentials among the five models used—CNN, Random Forest, SVM, 

Gradient Boosting, and KNN—highlighting how certain properties of these models interacted with the dataset fea-

tures:  

 The CNN's remarkable results are largely due to its capacity to exploit convolutional layers for collect-

ing local and hierarchical characteristics in retinal images, vital for spotting subtle indications of dia-

betic retinopathy.  Its deep learning nature helps it to understand complicated patterns that other mod-

els would overlook, hence its superior accuracy and ROC-AUC scores.  

 Random Forest did well in terms of robustness, ascribed to its ensemble technique, which averages 

numerous deep decision trees to decrease variation and prevent overfitting.  However, its performance 

can lag behind CNN owing to its inability to capture the same amount of information in image charac-

teristics.  

 SVM displayed middling performance, influenced by its sensitivity to class imbalances—a recurrent 

issue in medical datasets.   Its performance rests on the selection of an appropriate kernel (RBF in this 

case) and the tuning of its C and gamma parameters, which determine the decision boundary's flexibil-

ity.   

 Gradient Boosting's performance was notable for its use of boosting techniques, which systematically 

remedy errors from preceding trees.   This approach is useful for managing a variety of data attributes, 

but if the training dataset is not properly regularized, it may cause over-specialization.   

 Considering KNN is an instance-based, non-parametric learning approach, it is simple to use but gen-

erally less effective in difficult image classification settings where the feature space is big and multi-

dimensional. Its performance is greatly reliant upon the exact number of neighbours and the distance 

measure utilized, which may have restricted its utility in this experiment. 

8. Conclusion 

In this study, we meticulously compared the diagnostic capabilities of five different algorithms—CNN, Random 

Forest, SVM, Gradient Boosting, and KNN—across a dataset of retinal images to identify the most effective method 

for detecting diabetic retinopathy. CNN emerged as the standout performer, leveraging its deep learning framework 

to excel in feature extraction and accuracy, which is crucial for early disease detection. This research not only reaf-

firms the transformative potential of machine learning in enhancing ophthalmic diagnostics but also emphasizes the 

need for targeted algorithm selection and optimization to cater to specific medical imaging challenges. Moving for-

ward, there is a promising avenue in adapting these computational techniques into practical, real-world clinical set-

tings, enhancing early diagnosis and treatment outcomes for diabetic retinopathy among other retinal disorders. Future 

investigations could explore the integration of hybrid models and expand applicability to a broader spectrum of ocular 

conditions to further harness the full potential of artificial intelligence in healthcare. 

Data Availability: 

 The datasets used in this study are available from the corresponding authors upon reasonable request. 



Journal of Computational Informatics and Business                                                        

Volume 1, Issue 1, 2024 

References 

1. Sedjelmaci, H., Senouci, S. M., & Al-Bahri, M. (2020). A lightweight anomaly detection technique for low-resource IoT 

devices: A game-theoretic methodology. IEEE Internet of Things Journal, 7(5), 4552–4564. 

2. International Diabetes Federation. (2019). IDF Diabetes Atlas: 9th Edition. [Online]. 

3. Gupta, S. M. B., Chattopadhyay, A. K., & Patel, D. S. (2021). Diabetic retinopathy: The leading cause of blindness in adults. 

Ophthalmology Research, 33(4), 175–180. 

4. Nawaz, H., Sethi, M. S., Nazir, S. S., & Jamil, U. (2024). Enhancing national cybersecurity and operational efficiency through 

legacy IT modernization and cloud migration: A US perspective. Journal of Computing & Biomedical Informatics, 7(2). 

5. Sharma, A. K., Jones, T. L., & Patel, V. N. (2021). Machine learning and retinal imaging: Enhancing the accuracy of diabetes 

diagnosis. International Journal of Medical Informatics, 139, 104–114. 

6. Davis, E. L., Wu, B. F., & Nilsen, H. M. (2021). Deep learning approaches for medical image analysis: Applications in diabetic 

retinopathy. IEEE Transactions on Medical Imaging, 40(7), 2215–2227. 

7. Smith, J., Singh, A. K., & Lee, M. (2019). Machine learning models for diabetes prediction: A review. Journal of Medical 

Systems, 43(8), 123–130. 

8. Kaur, M., Sharma, A., & Gupta, G. (2019). Deep learning techniques for diabetic retinopathy detection. IEEE Access, 7, 

34378–34387. 

9. Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., ... & Webster, D. R. (2016). Development 

and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22), 

2402–2410. 

10. Voets, T., Knaus, K. M., & Van Der Heijden, F. (2019). Classification of diabetic retinopathy using SVM and random forest. 

Journal of Biomedical Informatics, 100, 103–109. 

11. Ijaz, A., Khan, A. A., Arslan, M., Tanzil, A., Javed, A., Khalid, M. A. U., & Khan, S. (2024). Innovative machine learning 

techniques for malware detection. Journal of Computing & Biomedical Informatics, 7(1), 403–424. 

12. Ibraheem, I., Ramay, S. A., Abbas, T., ul Hassan, R., & Khan, S. (2024). Identification of skin cancer using machine learning. 

Journal of Computing & Biomedical Informatics, 7(2). 

13. Awan, I. A., Sumra, I. A., Mahmood, K., Akram, M., Mujahid, S. K., & Zaman, M. I. (2024). A reliable approach for data 

security framework in cloud computing network. Migration Letters, 21(S11), 923–934. 

14. Ullah, A., Waqar, M., Nazir, S. S., Adnan, A., Khan, M. A., Raffat, M. W., & Rafi, S. (2024). The impact of information 

communication technology and financial innovation on the financial performance of Chinese commercial banks. Remittances 

Review, 9(S2), 364–383. 

15. Abbas, M., Arslan, M., Bhatty, R. A., Yousaf, F., Khan, A. A., & Rafay, A. (2024). Enhanced skin disease diagnosis through 

convolutional neural networks and data augmentation techniques. Journal of Computing & Biomedical Informatics, 7(1), 87–

106. 

16. Khan, A. A., Arslan, M., Tanzil, A., Bhatty, R. A., Khalid, M. A. U., & Khan, A. H. (2024). Classification of colon cancer 

using deep learning techniques on histopathological images. Migration Letters, 21(S11), 449–463. 

17. Fatima, A., Shabbir, A., Janjua, J. I., Ramay, S. A., Bhatty, R. A., Irfan, M., & Abbas, T. (2024). Analyzing breast cancer 

detection using machine learning & deep learning techniques. Journal of Computing & Biomedical Informatics, 7(2). 

18. Wilson, D., Zhang, X., Wu, Y., Cheng, Q., & Huang, S. (2020). Challenges in generalizing deep learning models for retinal 

disease detection. Journal of Digital Imaging, 33(2), 393–403. 

19. Hussain, S. K., Ramay, S. A., Shaheer, H., Abbas, T., Mushtaq, M. A., Paracha, S., & Saeed, N. (2024). Automated classifi-

cation of ophthalmic disorders using color fundus images. Kurdish Studies, 12(4), 1344–1348. 

20. Patil, A., & Kulkarni, B. (2020). Binary classification for diabetic retinopathy using deep learning models: A comparative 

study. IEEE Transactions on Medical Imaging, 39(4), 1355–1365. 

21. Sharma, S., Shah, M., & Singh, A. (2020). Explainable AI in healthcare: Retinopathy detection using CNN. Journal of 

Healthcare Informatics Research, 4(2), 181–195. 

22. Tang, L., Wang, Y., Li, X., & Zhang, W. (2020). Multi-modal data integration for enhanced diabetic retinopathy diagnosis. 

Medical Image Analysis, 61, 101657. 



Journal of Computational Informatics and Business                                                        

Volume 1, Issue 1, 2024 

23. Kim, H., Lee, S., Choi, D., & Park, J. (2020). Assessment of deep learning models for the detection of diabetic retinopathy in 

a real-world clinical setting. Ophthalmology, 127(5), 715–724. 

24. Gonzalez, R., Martinez, L., & Sanchez, J. (2021). Retinal image analysis for diabetes detection using machine learning: A 

review. Computer Methods and Programs in Biomedicine, 199, 104931. 

25. Liang, J., Liu, Y., & Zhou, X. (2021). Applications of deep learning in diabetic retinopathy: A review. Computers in Biology 

and Medicine, 132, 104328. 

26. Wang, S., Zhang, Z., & Li, J. (2020). Automated detection of diabetic retinopathy using deep learning algorithms. Journal of 

Diabetes and Its Complications, 34(4), 107–115. 

27. Liu, C., Zhang, Y., & Huang, J. (2021). Deep learning-based diagnosis of diabetic retinopathy: A comprehensive review. 

Ophthalmology Retina, 5(5), 456–467. 

28. Ahmad, R., Salahuddin, H., Rehman, A. U., Rehman, A., Shafiq, M. U., Tahir, M. A., & Afzal, M. S. (2024). Enhancing 

database security through AI-based intrusion detection system. Journal of Computing & Biomedical Informatics, 7(2). 

29. Gupta, A., Sharma, P., & Singh, R. (2021). Comparative analysis of deep learning techniques for diabetic retinopathy detection. 

Journal of Medical Imaging and Health Informatics, 11(5), 1386–1394. 

30. Khan, N. A., Iqbal, M., & Qureshi, S. (2022). Explainable AI techniques in medical imaging: Application in diabetic retinopa-

thy detection. IEEE Transactions on Neural Networks and Learning Systems, 33(5), 1997–2008. 

31. Hernandez, R., Torres, A., & Gomez, M. (2021). The role of artificial intelligence in retinal image analysis for diabetic reti-

nopathy screening. Survey of Ophthalmology, 66(3), 523–535. 

32. Wei, P., Wang, Q., & Zhao, S. (2022). Transformers in retinal image analysis for diabetic retinopathy detection. IEEE Trans-

actions on Medical Imaging, 41(3), 881–891. 

33. Huang, X., Yang, Z., & Liu, L. (2021). Real-world application of deep learning algorithms for diabetic retinopathy detection: 

Challenges and opportunities. Lancet Digital Health, 3(12), e755–e765. 

34. Feng, Y., Zhang, X., & Wu, Y. (2021). Challenges in the application of deep learning for retinal image analysis: A review. 

Computers in Biology and Medicine, 138, 104916. 

35. Zhu, T., Li, Y., & Chen, M. (2022). Deep learning models for retinal image analysis: A survey. Neurocomputing, 463, 163–

173. 

36. Rahman, M., Khan, S., & Iqbal, T. (2022). Federated learning for diabetic retinopathy detection. Journal of Biomedical Infor-

matics, 127, 104012. 

37. Chishti, M. F., Rao, M., Raffat, M. W., & Rafi, S. (2024). Estimating corporate risk and corporate value: An application of 

Altman's Z-Score on the KSE-30 index. International Journal of Contemporary Issues in Social Sciences, 3(2), 2833–2841. 

38. Wei, P., Wang, Q., & Zhao, S. (2022). Transformers in retinal image analysis for diabetic retinopathy detection. IEEE Trans-

actions on Medical Imaging, 41(3), 881–891. 

39. Khan, N. A., Iqbal, M., & Qureshi, S. (2022). Explainable AI techniques in medical imaging: Application in diabetic retinopa-

thy detection. IEEE Transactions on Neural Networks and Learning Systems, 33(5), 1997–2008. 

40. Singh, A., & Gupta, R. (2022). Diabetic retinopathy detection in retinal images using novel deep learning techniques. Biomed-

ical Signal Processing and Control, 73, 103515. 

41. Nawaz, H., Sethi, M. S., Nazir, S. S., & Jamil, U. (2024). Enhancing national cybersecurity and operational efficiency through 

legacy IT modernization and cloud migration: A US perspective. Journal of Computing & Biomedical Informatics, 7(2). 

42. Khalil, M. I. K., Umer, H., Ullah, K., Khamosh, S. U., Naqvi, S. F. M., Nawaz, A., & Ahmed, S. (2024). Revolutionizing 

schizophrenia diagnosis: A transfer learning approach to accurate classification. Journal of Computing & Biomedical Infor-

matics, 7(2), 1–12. 

43. Khan, R., Iltaf, N., Shafiq, M. U., & Rehman, F. U. (2023). Metadata based cross-domain recommender framework using 

neighborhood mapping. In 2023 International Conference on Sustainable Technology and Engineering (i-COSTE) (pp. 1–8). 

IEEE. 

44. Fatima, A., Shabbir, A., Janjua, J. I., Ramay, S. A., Bhatty, R. A., Irfan, M., & Abbas, T. (2024). Analyzing breast cancer 

detection using machine learning & deep learning techniques. Journal of Computing & Biomedical Informatics, 7(2). 

45. Shafiq, M. U., & Butt, A. I. (2024). Segmentation of Brain MRI Using U-Net: Innovations in Medical Image Processing. 

Journal of Computational Informatics & Business, 1(1). 


